Diastereoselective [2,3]-sigmatropic rearrangements of lithium N -benzyl- O-allylhydroxylamides bearing a stereogenic centre adjacent to the migration terminus

Steven D. Bull, Stephen G. Davies,* Sara Hernández Domíngez, Simon Jones, Anne J. Price, Thomas G. R. Sellers and Andrew D. Smith

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford, UKOX13QY. E-mail: steve.davies@chemistry.ox.ac.uk

Received (in Cambridge, UK) 18th July 2002, Accepted 1st August 2002
First published as an Advance Article on the web 2nd September 2002

The diastereoselective [2,3]-sigmatropic rearrangements of lithium N-benzyl- O-allylhydroxylamides bearing a stereogenic centre adjacent to the migration terminus are examined. (E)- N-Benzyl- O-(4-phenylpent-2-enyl)hydroxylamine rearranges in 30% de to afford syn-($3 R S, 4 R S$)-3-(N-benzyl- N-hydroxy)-4-phenylpent-1-ene as the major diastereoisomer, consistent with the rearrangement proceeding under moderate steric control. Rearrangements of both lithium (E) - and (Z) - N-benzyl- O-(4-methoxy-4-phenylbut-2-enyl)hydroxylamides furnish syn($1 R S, 2 R S$)-1-phenyl-1-methoxy-3-(N-benzylamino)but-3-ene in $\geq 90 \%$ and 88% de respectively, consistent with these rearrangements proceeding under chelation control.

Introduction

Reactions that are capable of producing multiple functionalities both regio- and stereoselectively are essential for synthesis. Sigmatropic rearrangements, ${ }^{1}$ in particular stereoselective [2,3]sigmatropic shifts, ${ }^{2}$ are one such class of transformations that have found extensive synthetic application. ${ }^{3}$ Within this field, previous investigations from our laboratory have shown that, upon treatment with n-BuLi in THF, a range of N-benzyl- O allylhydroxylamines $\mathbf{1}$ undergo an intramolecular [2,3]-sigmatropic rearrangement to afford N-benzyl- N -hydroxyallylamines 2, which after subsequent reduction afford the corresponding N-benzyl- N-allylamines 3 in good yield. ${ }^{4}$ The allylic amine functionality produced in this rearrangement protocol has been recognised both for its presence in molecules of biological interest, ${ }^{5}$ and as a synthon for the introduction of a variety of other functional groups (Scheme 1). ${ }^{6}$

Scheme 1 Reagents and conditions: (i) n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to rt (ii) $\mathrm{Zn}, \mathrm{HCl}_{\text {(aq) }}, 80^{\circ} \mathrm{C}$.

Due to the expanding interest in the stereoselective synthesis of such compounds, ${ }^{7}$ investigations concerning the rearrangement of chiral N -benzyl- O -allylhydroxylamines are described herein. It was envisaged that a stereogenic centre adjacent to the migration terminus could control the diastereoselectivity of the reaction, allowing the stereoselective synthesis of allylic amines (Fig. 1).

[2,3]-sigmatropic rearrangement

reduction

Fig. 1
We present herein our investigations concerning the effect of allylic $\mathrm{C}(4)$-stereocentres bearing alkyl and alkoxy substituents on the diastereoselectivity of the N,O-rearrangement. Part of this work has been previously communicated. ${ }^{8}$

Results

Probing steric effects in the diastereoselective [2,3]-sigmatropic N,O-rearrangement

Initial attention was directed towards elucidating the level of diastereoselectivity imposed in the N,O-rearrangement on the basis of steric control through rearrangement of (E) - N-benzyl-O-(4-phenylpent-2-enyl)hydroxylamine 8, which was prepared from racemic 2-phenylpropanal 4 in five steps. Wittig reaction of aldehyde $\mathbf{4}$ with ethyl (triphenylphosphoranylidene)acetate gave the (E)- α, β-unsaturated ester 5 in quantitative yield and in $>95 \%$ de. ${ }^{9}$ Subsequent DIBAL-H reduction gave the allylic alcohol 6 in 75% yield, followed by bromination with PBr_{3} and bromide displacement with the potassium anion of benzaldehyde oxime to afford oxime 7 in 64% yield over two steps. Reduction of the $\mathrm{C}=\mathrm{N}$ bond with pyridine-borane -HCl gave the desired substrate (E)- N-benzyl- O-(4-phenylpent-2-enyl)hydroxylamine $\mathbf{8}$ in 78% yield (Scheme 2).
Deprotonation of (E)- N -benzyl- O -(4-phenylpent-2-enyl)hydroxylamine 8 according to our established protocol ${ }^{4}$ pro-

Scheme 2 Reagents and conditions: (i) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ (1.0 eq.), THF; $-78{ }^{\circ} \mathrm{C}$ to rt; (ii) DIBAL-H (2.5 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;-7{ }^{\circ}{ }^{\circ} \mathrm{C}$ to rt; (iii) PBr_{3} $\mathrm{Et}_{2} \mathrm{O}$, rt; (iv) $\mathrm{PhCH}=\mathrm{NOK}, \mathrm{THF}$, rt; (v) $\mathrm{BH}_{3}-\mathrm{pyr}, \mathrm{EtOH}, \mathrm{HCl}, \mathrm{rt}$.
moted the [2,3]-sigmatropic N,O-rearrangement, affording a mixture of allylic amines $\mathbf{9}$ and $\mathbf{1 0}$ in $>90 \%$ conversion, but with only a moderate 30% diastereomeric excess. ${ }^{9}$ In order to facilitate identification of the relative configuration within hydroxylamines $\mathbf{9}$ and $\mathbf{1 0}$, separation by chromatography was attempted. However, $\mathbf{9}$ and $\mathbf{1 0}$ proved somewhat unstable to purification on silica, which furnished $\mathbf{9}$ and $\mathbf{1 0}$ as an inseparable mixture of diastereoisomers in 43% yield, much lower than that expected from the high levels of conversion apparent in the crude reaction mixture. Subsequent reduction of the mixture of hydroxylamines 9 and 10 ($65: 35,30 \%$ de) to amines 11 and $\mathbf{1 2}$ was effected using $\mathrm{Zn}-\mathrm{HCl}(\mathrm{aq})$, which also facilitated their separation by flash chromatography, affording the amines 11 and $\mathbf{1 2}$ in 53% (82% of theoretical) and $30 \% ~(86 \%$ of theoretical) yields respectively (Scheme 3).

The relative configurations within $\mathbf{1 1}$ and $\mathbf{1 2}$ were established via chemical correlation in which 2 -amino-3-phenylbutanoic

(i, ii) $\left\lvert\, \begin{gathered}30 \% \text { d.e. } \\ >90 \% \text { conversion, } \\ 43 \% \text { isolated yield }\end{gathered}\right.$

Major - (3RS,4RS) - $\mathbf{9} \quad$ Minor - $(3 S R, 4 R S)$ - 10
(iii)

(3RS,4RS)-11,53\% (3SR,4RS)-12,30\%
Scheme 3 Reagents and conditions: (i) n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ then rt (ii) $\mathrm{H}_{2} \mathrm{O}$; (iii) $\mathrm{Zn}, \mathrm{HCl}(\mathrm{aq}), 80^{\circ} \mathrm{C}$.
acid hydrochloride (commercially available ${ }^{10}$ as a $2: 1$ mixture of $(2 S R, 3 R S)-\mathbf{1 3}$ to $(2 R S, 3 R S) \mathbf{- 1 4}$ diastereoisomers $)^{11}$ was transformed into a mixture of the primary amines $\mathbf{1 7}$ and $\mathbf{1 8}$. Thus, treatment of the mixture of $\mathbf{1 3}$ and 14 with thionyl chloride in methanol and subsequent N-Boc protection, followed by DIBAL-H reduction to the aldehyde and Wittig extension ${ }^{12}$ gave a $2: 1$ ratio of $\operatorname{syn}-(3 R S, 4 R S)-15$ to anti($3 S R, 4 R S$)-16 diastereoisomers of 3-(N-tert-butoxycarbonyl)-4-phenylpent-1-ene. Hydrogenation and N-Boc deprotection gave an authentic sample of a $2: 1$ mixture of syn-($2 R S, 3 R S$)to anti-($2 R S, 3 S R$)-2-phenyl-3-aminopentane $\mathbf{1 7}$ and $\mathbf{1 8}$ respectively (Scheme 4).

Scheme 4 Reagents and conditions: (i) $\mathrm{MeOH}, \mathrm{SOCl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt; (ii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ to rt; (iii) DIBAL-H (1.1 eq.), toluene $-78^{\circ} \mathrm{C}$; (iv) $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (1.05 eq .), n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to rt; (v) $\mathrm{Pd}(\mathrm{OH})_{2}$ on $\mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}$, rt; (vi) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt then $\mathrm{NaOH}_{\text {(aq) }}$.

Concomitant hydrogenation and hydrogenolysis of the minor diastereoisomer ($3 S R, 4 R S$)-12 from the N,O-rearrangement of O-allylhydroxylamine 8 afforded anti-($2 R S, 3 S R$)-2-phenyl-3-aminopentane 18 (Scheme 5), which was shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be identical to the minor component prepared from 2-amino-3-phenylbutanoic acid hydrochloride (Scheme 4). This protocol establishes unambiguously that the major diastereoisomer from the rearrangement of $\mathbf{8}$ is syn-(3RS,4RS)-3-(N-benzyl- N-hydroxy)-4-phenylpent-1-ene 9, and that of the minor diastereoisomer is anti- $(3 S R, 4 R S)-3-(N-$ benzyl- N-hydroxy)-4-phenylpent-1-ene $\mathbf{1 0}$

Scheme 5 Reagents and conditions: (i) $\mathrm{Pd}(\mathrm{OH})_{2}$ on $\mathrm{C}, \mathrm{H}_{2}$ (1 atm), MeOH , rt.

Probing stereoelectronic and chelation effects in the diastereoselective [2,3]-sigmatropic N,O-rearrangement

In order to probe whether an alkoxy substituent would allow stereocontrol in the [2,3]-N,O-rearrangement, (E) - N-benzyl-O-(4-methoxy-4-phenylbut-2-enyl)hydroxylamine 24 was prepared as a model substrate. Thus, methyl O-methylmandelate 19 was reduced with DIBAL-H in toluene at $-78^{\circ} \mathrm{C}$ and the
resulting aldehyde treated in situ with ethyl (triphenylphosphoranylidene)acetate to afford the (E)- α, β-unsaturated ester 20 in an unoptimised 53% yield and $>95 \%$ de. Reduction of ester $\mathbf{2 0}$ with DIBAL-H in toluene gave allylic alcohol 21 in 80% yield, which was subsequently treated with N-bromosuccinimide in the presence of triphenylphosphine to afford the unstable allylic bromide 22. Treatment of the crude reaction product of the bromination reaction with the potassium anion derived from benzaldehyde oxime afforded oxime 23 in an overall 45% yield from allylic alcohol 21. Reduction of oxime 23 with pyridine-borane- HCl gave the desired rearrangement substrate (E)- N -benzyl- O -(4-methoxy-4-phenylbut-2enyl)hydroxylamine 24 in 57% yield (Scheme 6).

Scheme 6 Reagents and conditions: (i) DIBAL-H (1.1 eq.), toluene, $-78^{\circ} \mathrm{C}$, then $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ (1.1 eq.), $-78^{\circ} \mathrm{C}$ to rt; (ii) DIBAL-H (2.5 eq.), toluene, $-78{ }^{\circ} \mathrm{C}$; (iii) NBS (1.05 eq.), $\mathrm{Ph}_{3} \mathrm{P}$ (1.1 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (iv) $\mathrm{PhCH}=\mathrm{NOK}, \mathrm{THF}$, rt; (v) $\mathrm{BH}_{3}-\mathrm{pyr}, \mathrm{EtOH}, \mathrm{HCl}, 50^{\circ} \mathrm{C}$.

Treatment of hydroxylamine $\mathbf{2 4}$ with 1.1 equivalents of n BuLi in THF at $-78^{\circ} \mathrm{C}$, followed by warming to rt resulted in [2,3]-rearrangement, giving the required allyl amine 25 in $>90 \%$ conversion and $\geq 90 \%$ de. ${ }^{9} \mathrm{Zn}-\mathrm{HCl}$ reduction of the crude reaction mixture afforded syn-($1 R S, 2 R S$)-1-phenyl-1-methoxy-3-(N-benzylamino)but-3-ene 26 in 90% de, which was purified by chromatography furnishing syn-($1 R S, 2 R S$)-amine 26 in 63% yield and 97% de (Scheme 7).

Scheme 7 Reagents and conditions: (i) n-BuLi, THF, $-78^{\circ} \mathrm{C}$; (ii) Zn , $\mathrm{HCl}(\mathrm{aq}), 80^{\circ} \mathrm{C}$.

The relative $\operatorname{syn}-(1 R S, 2 R S)$ configuration within 1-phenyl-1-methoxy-3-(N-benzylamino)but-3-ene 26 was established by X-ray crystallographic analysis of its crystalline HCl salt, which unambiguously identified syn-($1 R S, 2 R S)-\mathbf{2 6}$ as the major diastereoisomer from the N,O-rearrangement of hydroxylamine $\mathbf{2 4}$ (Fig. 2). ${ }^{8}$

Fig. 2 X-Ray crystal structure of hydrated $\operatorname{syn}-(1 R S, 2 R S)-\mathbf{2 6} \cdot \mathrm{HCl}$.
The high diastereoselectivity ($\geq 90 \%$) observed upon rearrangement of (E)-hydroxylamine $\mathbf{2 4}$ was confirmed by the synthesis of an authentic sample of the minor anti-($1 R S, 2 S R$)diastereoisomer $\mathbf{2 8}$ arising from the rearrangement and reduction protocol. Thus, methyl O-methylmandelate 19 was reduced to the corresponding aldehyde and, after in situ formation of the benzyl imine 27 , vinylmagnesium bromide addition afforded anti-($1 R S, 2 S R$)-1-phenyl-1-methoxy-3-(N-benzyl-amino)but-3-ene 28 in $>95 \%$ de. ${ }^{13}$ Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra from the crude reaction mixture of the $\mathrm{Zn}-\mathrm{HCl}$ reduction of the crude rearrangement products allowed confirmation of the rearrangement diastereoselectivity as $\geq 90 \%$ de (Scheme 8).

Scheme 8 Reagents and conditions: (i) DIBAL-H (1.1 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}$ then benzylamine (1.0 eq.), $\mathrm{MeOH},-78^{\circ} \mathrm{C}$ to rt; (ii) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (3 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ then vinylmagnesium bromide, $-78^{\circ} \mathrm{C}$ to rt.

To probe the influence of the double bond geometry in the N, O-rearrangement, the preparation and rearrangement of (Z)- N -benzyl- O -(4-methoxy-4-phenylbut-2-enyl)hydroxylamine 34 was investigated. O-Alkylation of benzaldehyde oxime with propargyl bromide 29 gave the oxime 30 in 87% yield, with
subsequent deprotonation and reaction with benzaldehyde affording the di-substituted alkyne $\mathbf{3 1}$ in 77% yield. O Methylation afforded alkyne 32, with hydrogenation with Lindlar's catalyst to the (Z)-alkene 33 and reduction of the imine with pyridine-borane- HCl furnishing the desired (Z) amine 34 (Scheme 9).

Scheme 9 Reagents and conditions (i) $\mathrm{PhCH}=\mathrm{NOK}$ (1.1 eq.), THF, $0{ }^{\circ} \mathrm{C}$ to rt; (ii) LHMDS (1.1 eq.), THF, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$ then PhCHO ; (iii) NaH (1.1 eq .), THF, $0^{\circ} \mathrm{C}$ then MeI (3 eq.), $0^{\circ} \mathrm{C}$ to rt ; (iv) Lindlar's catalyst, $\mathrm{H}_{2}(4 \mathrm{~atm}), \mathrm{MeOH}$, rt; (v) $\mathrm{BH}_{3}-$ pyr, EtOH, $0{ }^{\circ} \mathrm{C}$ then EtOH$\mathrm{HCl}, \mathrm{rt}$.

Treatment of (Z)-hydroxylamine 34 with n-BuLi under the standard rearrangement conditions gave a crude reaction mixture which indicated that the rearrangement had proceeded in $>90 \%$ conversion and in 88% de to furnish syn-hydroxylamine 25. Purification gave $\operatorname{syn}-25$ (identical to that formed from rearrangement of (E)-hydroxylamine 24) in 98% de and in 51% yield. Further reduction of $\mathbf{2 5}$ with $\mathrm{Zn}-\mathrm{HCl}$ furnished syn($1 R S, 2 R S$)-1-phenyl-1-methoxy-3-(N-benzylamino)but-3-ene 26 in 98% de and 63% yield (Scheme 10).

Scheme 10 Reagents and conditions: (i) n-BuLi, THF, -78 to rt; (ii) $\mathrm{Zn}, \mathrm{HCl}_{(\mathrm{aq})}, 80^{\circ} \mathrm{C}$.

Discussion

Models for the diastereoselective \mathbf{N}, \mathbf{O}-rearrangement

The diastereoselectivity observed upon reaction of an acyclic $\mathrm{C}=\mathrm{C}$ bond with an adjacent stereocentre have been widely investigated. Probably the most studied reaction in this field concerns 1,2 -asymmetric induction for the conjugate addition of alkoxides, ${ }^{14}$ amines, ${ }^{15}$ carbon nucleophiles, ${ }^{16}$ and metal amides ${ }^{17}$ to α, β-unsaturated acceptors, with the levels of diastereoselectivity in these transformations generally being rationalised by a modified Felkin-Anh model as developed by Houk et al. ${ }^{18}$ In the preferred transition state of such reactions, an allylic σ-bond is oriented antiperiplanar to the trajectory of the approaching reagent, with the conformational preference of the allylic stereocentre considered a combination of steric effects (approach anti to the largest allylic substituent) and stereoelectronic effects (approach anti to the best electron withdrawing group). Application of a modification of this model has been applied to [2,3]-sigmatropic Wittig rearrangements by Brückner, ${ }^{19}$ and utilisation of this model for the rearrangement of (E)- N -benzyl- O -(4-phenylpent-2-enyl)hydroxylamine $\mathbf{8}$ predicts the predominant formation of syn-(3RS,4RS)-3-(N -benzyl- N-hydroxy)-4-phenylpent-lene 11 (Fig. 3). To minimise

Favoured Pathway

Major diastereoisomer syn-(3RS,4RS)-11

Disfavoured Pathway

Minor diastereoisomer
anti-(3SR,4RS)-12

Fig. 3 Steric control of diastereoselectivity.
steric interactions in the transition state, the allylic stereocentre will preferentially adopt a conformation whereby the nitrogen atom will attack anti- to the large $\mathrm{C}(4)$ phenyl substituent, with the $\mathrm{C}(4)$ hydrogen atom oriented onto the inside of the transition state model to minimise allylic strain. Rearrangement with the nitrogen anti-to the $\mathrm{C}(4)$ methyl group furnishes the minor anti-($3 S R, 4 R S$)-diastereoisomer 12.
Further application of this model to the rearrangements of (E)- and (Z)- N -benzyl- O-(4-methoxy-4-phenylbut-2-enyl)hydroxylamines 24 and 34 respectively predicts that these rearrangement processes would occur under stereoelectronic control. In this scenario, rearrangement of the lithium anion of (E)- N -benzyl- O -(4-methoxy-4-phenylbut-2-enyl)hydroxylamine 24 would proceed via attack of the nitrogen atom anti- to the electron withdrawing methoxy substituent, giving rise to the anti-($1 S R, 2 R S$) diastereoisomer 28 (Fig. 4).
As the major diastereoisomer from rearrangement of $\mathbf{2 4}$ is actually the syn-($1 R S, 2 R S$) diastereoisomer 25, it is clear that this form of stereoelectronic control is not the dominat factor in

Predicted Major diastereoisomer
anti-(1SR,2RS)-28
Fig. 4 Stereoelectronic model predicts anti-($1 S R, 2 R S$)-28 as the major diastereoisomer.
this rearrangement. As an alternative model, the possibility of the rearrangement pathway proceeding via a chelated transition state was evaluated. ${ }^{20}$ Thus, allowing for lithium chelation between nitrogen and the $C(4)$ oxygen substituent, a prediction for preferential attack onto the alkene functionality syn to the $\mathrm{C}(4)$-OMe substituent, furnishing the observed $\operatorname{syn}-(1 R S, 2 R S)$ diastereoisomer 25 can be made. Application of this model to the rearrangement of (Z)- N -benzyl- O -(4-methoxy-4-phenyl-but-2-enyl)hydroxylamine 34 also predicts the predominant formation of the syn-($1 R S, 2 R S$) diastereoisomer 25 (Fig. 5). ${ }^{21}$

Prediction of Chelation Control - (Z) isomer
Fig. 5 Chelation model predicts syn-(1RS,2RS)-25 as the major diastereoisomer.

In conclusion, we have demonstrated that the diastereoselective [2,3]-sigmatropic rearrangements of lithium N -benzyl- O allylhydroxylamides bearing a stereogenic centre adjacent to the migration terminus can proceed with high levels of diastereoselectivity. (E)-N-Benzyl-O-(4-phenylpent-2-enyl)hydroxylamine rearranges to afford syn- $(3 R S, 4 R S)-3-(N$-benzyl $-N$ -hydroxy)-4-phenylpent-1-ene as the major diastereoisomer in 30% de, consistent with the rearrangement proceeding under moderate steric control. Rearrangements of both (E) and (Z)- N -benzyl- O -(4-methoxy-4-phenylbut-2-enyl)hydroxyl-
amines furnish syn-(1RS,2RS)-1-phenyl-1-methoxy-3-N-benzylaminobut-3-ene with $\geq 90 \%$ and 88% de respectively, consistent with the rearrangement proceeding under chelation control. Current investigations within our laboratory are directed toward probing enantioselective [2,3]-sigmatropic N, O-rearrangements, and the application of this methodology to natural product synthesis.

Experimental

General experimental

Melting points were determined using a Gallenkamp hot stage apparatus, and are uncorrected. Infrared spectra were recorded using a Perkin-Elmer Paragon 1000 Fourier transform spectrometer. NMR spectra were recorded using Bruker DPX $400\left({ }^{1} \mathrm{H} 400 \mathrm{MHz},{ }^{13} \mathrm{C} 100 \mathrm{MHz}\right)$, or Varian Gemini $200\left({ }^{1} \mathrm{H} 200\right.$ $\mathrm{MHz},{ }^{13} \mathrm{C} 50 \mathrm{MHz}$) spectrometers. Chemical shifts (δ) were recorded in ppm, coupling constants (J) were recorded in Hertz. Chemical shifts were referenced to residual protonated solvent. Spectra were recorded at rt unless otherwise stated. Assignment of carbon spectra was aided by DEPT editing. Low resolution mass spectra were recorded using a VG MASSLAB $20-250$ spectrometer. High resolution mass spectra were obtained by Mr R. Procter using a VG Autospec spectrometer. Elemental analyses were obtained by Mrs Anne Douglas of the Inorganic Chemistry Laboratory, University of Oxford. Column chromatography was performed using silica (Merck, $70-320$ mesh). TLC was performed on aluminium backed Kieselgel 60 F254 plates (Merck). Plates were developed using either a UV lamp (254 nm), 10% phosphomolybdic acid in ethanol, or $\mathrm{KMnO}_{4}(1 \%$ solution in 2% aqueous acetic acid, containing 7\% potassium carbonate). Benzaldehyde was distilled immediately prior to use from calcium hydride. THF was distilled from sodium benzophenone ketyl; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from calcium hydride. All other solvents were used as supplied, without further purification. All yields quoted represent isolated yields. LHMDS was used as a commercially available 1.0 M solution in THF
(\boldsymbol{E})-Ethyl 4-phenylpent-2-enoate 5. 2-Phenylpropanal 4 $(4.0 \mathrm{~g}, 3.96 \mathrm{~mL}, 29.9 \mathrm{mmol})$ was added dropwise to a stirred solution of $\mathrm{Ph}_{3} \mathrm{P}=$ CHCOOEt ($10.4 \mathrm{~g}, 29.9 \mathrm{mmol}$) in THF $(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirred for 1 h before warming to rt . After 72 h , aq sat $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added, and the resultant solution extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), washed with sat brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting white solid was taken up in ice-cold petrol and filtered to remove $\mathrm{Ph}_{3} \mathrm{PO}$. Concentration in vacuo gave 5 $\{5.96 \mathrm{~g}$, quantitative yield, $>95 \%(E)\}$ as a yellow oil which was utilised for further reactions without further purification although a small portion was purified for characterisation by column chromatography $\{10 \% \mathrm{EtOAc}-$ petrol ($40: 60$) $\}$ giving a pale yellow oil. $v_{\max } / \mathrm{cm}^{-1}$ (film) $2976(\mathrm{~m}, \mathrm{C}-\mathrm{H}), 1718(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $1650(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1452\left(\mathrm{~m}, \mathrm{C}=\mathrm{C}\right.$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 1.28 ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.44\left(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CHCH}_{3}\right), 3.63$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 4.19\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.81(1 \mathrm{H}$, d, $J 15.7, \mathrm{CH}=\mathrm{C} H \mathrm{COOEt}), 7.12(1 \mathrm{H}, \mathrm{dd}, J 15.7,6.7, \mathrm{C} H=$ CHCOOEt), $7.19-7.35(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 14.1, $20.1\left(\mathrm{PhCHCH}_{3}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 42.0(\mathrm{PhCH})$, $60.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 120.2(\mathrm{CH}=\mathrm{CHCOOEt}), 127.0,127.6,128.9$ (aromatic $C \mathrm{H}$), 143.6 (ipso-C), $152.9\left(\mathrm{CH}_{3} \mathrm{CHCH}=\mathrm{CH}\right), 167.0$ (COOEt); m / z (APCI) $205\left(\mathrm{MH}^{+}, 100 \%\right), 177(17 \%), 159\left(\mathrm{MH}^{+}\right.$ - EtOH, 45\%), 131 (12\%), 122 (15\%), 105 (27%).
(\boldsymbol{E})-4-Phenylpent-2-en-1-ol 6. DIBAL-H (1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 36.8 \mathrm{~mL}, 36.8 \mathrm{mmol}$) was added dropwise to a stirred solution of $5(3.0 \mathrm{~g}, 14.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h before being allowed to warm to rt overnight. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~g})$ was added slowly and the resulting
slurry stirred for a further hour and filtered through Celite ${ }^{\circledR}$. The filtrate was diluted with further $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with aq $\mathrm{HCl}(2 \times 75 \mathrm{~mL}, 1 \mathrm{M})$, aq sat $\mathrm{NaHCO}_{3}(2 \times$ 75 mL) and sat brine ($2 \times 75 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\{25 \%$ EtOAc-petrol ($40: 60$) \} gave $\mathbf{6}(1.78 \mathrm{~g}, 75 \%)$ as a colourless oil. $v_{\max } / \mathrm{cm}^{-1}$ (film) 3340 (br, s, O-H), 2966 (m C-H), 1602 (w, C=C), 1452 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$ aromatic): $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40$ $\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH}_{3}\right), 1.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$, $4.13\left(2 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{CH}_{2} \mathrm{OH}\right), 5.67(1 \mathrm{H}, \mathrm{dt}, J 15.4,5.8, \mathrm{CH}=$ $\left.\mathrm{CHCH}_{2}\right), 5.89(1 \mathrm{H}, \mathrm{dd}, J 15.4,6.7, \mathrm{CH}=\mathrm{CHCH}), 7.20-7.39$ $(5 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.0\left(\mathrm{CH}_{3}\right), 41.9$ $\left(\mathrm{CHCH}_{3}\right), 63.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 126.4(\mathrm{CH}=\mathrm{CH}), 127.4,128.0,128.7$ (aromatic $C \mathrm{H}), 137.6(\mathrm{CH}=\mathrm{CH}), 145.8$ (ipso-C); m / z (APCI) $146(10 \%), 145\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right)$.

Benzaldehyde (\boldsymbol{E})-O-(4-phenylpent-2-enyl)oxime 7. PBr_{3} $(0.624 \mathrm{~g}, 0.22 \mathrm{~mL}, 2.80 \mathrm{mmol})$ was added dropwise to a stirred solution of $\mathbf{6}(1.0 \mathrm{~g}, 6.17 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ at rt and was stirred for 18 h . Water (10 mL) was added slowly and the solution extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, washed with aq sat $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and then sat brine $(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude bromide ($1.23 \mathrm{~g}, 88 \%$) as a yellow oil, which was used immediately in the next step. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.39\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right)$, $3.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 3.98\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{Br}\right), 5.65-6.02(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{C} H), 7.18-7.38(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) . \mathrm{KO}^{\prime} \mathrm{Bu}(1.22 \mathrm{~g}$, 10.9 mmol) was added to a stirred solution of benzaldehyde oxime ($1.32 \mathrm{~g}, 10.9 \mathrm{mmol}$) in THF (150 mL), and the mixture stirred for 30 min , after which time a solution of bromide $(1.23 \mathrm{~g}, 5.45 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added via cannula. The solution was stirred for 72 h at rt after which time aq phosphate pH 7 buffer (50 mL) was added and the resultant solution extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, washed with sat brine $(2 \times$ $75 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to give an orange oil. Purification by column chromatography $\left\{3 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol ($40: 60$) $\}$ afforded $7(1.05 \mathrm{~g}, 73 \%)$ as a pale yellow oil. $v_{\max } / \mathrm{cm}^{-1}$ (film) $2966(\mathrm{~m}, \mathrm{C}-\mathrm{H}), 1601$ (w, C=C), 1492 $\left(\mathrm{m}, \mathrm{C}=\mathrm{C}\right.$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\left.\mathrm{CH}_{3}\right), 3.53(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 3), 4.68\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CH}_{2} \mathrm{O}\right), 5.75$ $\left(1 \mathrm{H}, \mathrm{dt}, J 15.5,6.3, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}\right), 6.00(1 \mathrm{H}, \mathrm{dd}, J 15.5,6.6$, $\left.\mathrm{CH}_{3} \mathrm{CHCH}=\mathrm{CH}\right), 7.19-7.61(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H), 8.11(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.0\left(\mathrm{CH}_{3}\right), 42.0\left(\mathrm{PhCHCH}_{3}\right)$, $75.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 124.5(\mathrm{CH}=\mathrm{CH}), 126.5,127.3,127.6,128.7$, 129.0, 130.0 (aromatic $C \mathrm{H}$), 132.6 (ipso-C), $140.2(\mathrm{CH}=\mathrm{CH}$), 145.7 (ipso-C), 149.0 ($\mathrm{CH}=\mathrm{N}$); m/z (APCI) 266 ($\mathrm{MH}^{+}, 16 \%$), $145(100 \%), 123(14 \%), 122(62 \%), 106(56 \%)$; HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}^{+}: 266.1544$. Found: 266.1544 .

(E)-N-Benzyl- O -(4-phenylpent-2-enyl)hydroxylamine 8.

 Pyridine-borane complex (8 M in excess pyridine, 1.31 mL , 9.65 mmol) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added to a stirred solution of $7(1.05 \mathrm{~g}, 3.97 \mathrm{mmol})$ in $\mathrm{EtOH}(40 \mathrm{~mL})$ at rt before cooling to $0^{\circ} \mathrm{C}$ and the dropwise addition of $10 \% \mathrm{HCl}$ in $\mathrm{EtOH}(15 \mathrm{~mL})$ over 5 min . After stirring for a further 2 h the solution was neutralised with excess aq sat NaHCO_{3}, extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$), washed with aq $\mathrm{CuSO}_{4}(2 \times 50 \mathrm{~mL}, 1 \mathrm{M})$ and water (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\left\{20 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ petrol ($40: 60$) \} gave $\mathbf{8}(0.83 \mathrm{~g}, 78 \%)$ as a colourless oil. $v_{\text {max }} /$ cm^{-1} (film) 3260 (br, N-H), 2965 (m, C-H), 1602 (w, C=C), 1494 (m, C=C aromatic), 1453 (m, C=C aromatic); δ_{H} (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.38\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH}_{3}\right), 3.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$, $4.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{2}\right), 4.16\left(2 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{2} \mathrm{O}\right), 5.58(1 \mathrm{H}, \mathrm{dt}$, $\left.J 15.5,6.4, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{O}\right), 5.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.88(1 \mathrm{H}, \mathrm{dd}$, J 15.5, 6.6, $\left.\mathrm{CH}_{3} \mathrm{CHCH}=\mathrm{CH}\right), 7.19-7.36(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.0\left(\mathrm{CH}_{3}\right), 42.0\left(\mathrm{PhCHCH}_{3}\right), 56.6$ $\left(\mathrm{PhCH}_{2} \mathrm{NH}\right), 74.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 124.8(\mathrm{CH}=\mathrm{CH}), 126.4,127.5$, 127.7, 128.7, 129.2 (aromatic $C H), 137.7$ (ipso-C), 139.8 (CH= $C H$), 145.8 (ipso-C); m/z (Probe CI $\left(\mathrm{NH}_{3}\right)$) 269 (19\%), 268($\mathrm{MH}^{+}, 100 \%$), 145 (53), 106 (11), 91 (20); HRMS Calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}^{+}: 268.1701$. Found: 268.1696.
syn-(3RS,4RS)-3-(N-Benzyl- N-hydroxyamino)-4-phenylpent-1-ene 9 and anti-($3 S R, 4 R S$)-3-(N-benzyl- N-hydroxyamino)-4-phenylpent-1-ene 10. n - $\mathrm{BuLi}(1.1 \mathrm{M}, 1.5 \mathrm{~mL}, 1.65 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{8}(400 \mathrm{mg}, 1.50 \mathrm{mmol})$ in THF $(28 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirred for 30 min before warming to rt over 1 h . Water (10 mL) was added slowly and the solution extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and then concentrated in vacuo. Purification by column chromatography $\left\{10 \% \quad \mathrm{Et}_{2} \mathrm{O}\right.$-petrol(40 : 60)-1\% $\left.\mathrm{Et}_{3} \mathrm{~N}\right\}$ afforded an inseparable mixture of unstable diastereoisomers $\mathbf{9}$ and 10 $(340 \mathrm{mg}, 43 \%)$ as a colourless oil.
syn-(3RS,4RS)-9: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.22(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 3.14-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}\right.$ and $\left.\mathrm{NCHCH}=\mathrm{CH}_{2}\right)$, $3.68(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{NCHHPh}), 3.93(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{NCH} H \mathrm{Ph})$, $4.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.12-5.19(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHH}), 5.44(1 \mathrm{H}, \mathrm{d}$, J 10.3, $\mathrm{CH}=\mathrm{CH} H), 6.01-6.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.09-7.47$ $(10 \mathrm{H}, \mathrm{m}$, aromatic CH$)$.
anti-($3 S R, 4 R S$)-10: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.43(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 3.14-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}\right.$ and $\left.\mathrm{NCHCH}=\mathrm{CH}_{2}\right), 3.74$ $(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{NCHHPh}), 3.99(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{NCH} H \mathrm{Ph})$, $4.61(1 \mathrm{H}$, br s, OH$), 4.90(1 \mathrm{H}, \mathrm{d}, J 17.4, \mathrm{CH}=\mathrm{CHH}), 5.12-5.19$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH} H), 5.72-5.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.09-7.47$ $(10 \mathrm{H}, \mathrm{m}$, aromatic CH$)$.
syn-(3RS,4RS)-3-(N-Benzylamino)-4-phenylpent-1-ene 11 and anti-($3 S R, 4 R S$)-3-(N-benzylamino)-4-phenylpent-1-ene 12. Zinc powder ($413 \mathrm{mg}, 6.35 \mathrm{mmol}$) was added to a stirred solution of 9 and $\mathbf{1 0 (3 4 0 ~ m g , ~} 1.37 \mathrm{mmol})$ in aq $\mathrm{HCl}(30 \mathrm{~mL}, 1 \mathrm{M})$, and heated to $80^{\circ} \mathrm{C}$ for 1 h . After cooling, the reaction mixture was made alkaline (pH 10) by the addition of aq NaOH $(35 \mathrm{~mL}, 1 \mathrm{M})$ and extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, dried $(\mathrm{Mg}-$ SO_{4}), filtered and concentrated in vacuo. Purification by column chromatography $\left\{20 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol $\left.(40: 60)\right\}$ gave $12(96 \mathrm{mg}$, 30%) and 11 ($168 \mathrm{mg}, 53 \%$) as pale yellow oils.
anti-($3 S R, 4 R S$)-12: $v_{\max } / \mathrm{cm}^{-1}$ (film) $3328(\mathrm{w}, \mathrm{N}-\mathrm{H}), 3027(\mathrm{~m}$, $\mathrm{C}-\mathrm{H}), 1603$ (w, C=C), 1494 (m, $\mathrm{C}=\mathrm{C}$ aromatic), 1453 (m, C=C aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.33\left(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CH}_{3}\right), 2.94$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.14(1 \mathrm{H}, \mathrm{dd}, J 8.3,5.8, \mathrm{CHCHNH}), 3.60$ $(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{NHCHHPh}), 3.82(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{NHCH} H \mathrm{Ph})$, $5.03(1 \mathrm{H}, \mathrm{d}, J 17.2, \mathrm{CH}=\mathrm{CHH}), 5.13(1 \mathrm{H}, \mathrm{d}, J 10.2, \mathrm{CH}=\mathrm{CH} H)$, $5.48-5.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.19-7.31(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{CH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.0\left(\mathrm{CH}_{3}\right), 44.2\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $51.0\left(\mathrm{NHCH}_{2}\right), 66.0(\mathrm{NHCH}), 117.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.5,126.9$, 128.2, 128.3, 128.5 (aromatic $C \mathrm{H}), 139.0\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 140.9$ (ipso-C), 143.9 (ipso-C); m/z (APCI) 253 (15\%), 252 (MH^{+}, $100 \%), 145(96 \%)$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}: \mathrm{C} 86.0$, H 8.4, N 5.6. Found C 85.95, H 8.4, N 5.35\%.
syn-(3RS,4RS)-11: $v_{\max } / \mathrm{cm}^{-1}$ (film) $3326(\mathrm{w}, \mathrm{N}-\mathrm{H}), 3027(\mathrm{~m}$, $\mathrm{C}-\mathrm{H}), 1603(\mathrm{w}, \mathrm{C}=\mathrm{C}), 1494(\mathrm{~m}, \mathrm{C}=\mathrm{C}$ aromatic), $1453(\mathrm{~m}, \mathrm{C}=\mathrm{C}$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.18\left(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CH}_{3}\right), 2.71$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.03\left(1 \mathrm{H}\right.$, app t, $\left.J 8.8, \mathrm{CHC} H \mathrm{CH}=\mathrm{CH}_{2}\right), 3.52$ $(1 \mathrm{H}, \mathrm{d}, J 13.8, \mathrm{NHCHH}), 3.76(1 \mathrm{H}, \mathrm{d}, J 13.8, \mathrm{NHCHH}), 5.18$ $(1 \mathrm{H}, \mathrm{d}, J 17.1, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{d}, J 10.1, \mathrm{CH}=\mathrm{CH} H)$, $5.62-5.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.00-7.32(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{CH}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.4\left(\mathrm{CH}_{3}\right), 44.3\left(\mathrm{CH}_{3} \mathrm{CH}\right), 50.8$ $\left(\mathrm{NHCH} \mathrm{H}_{2} \mathrm{Ph}\right), 66.4\left(\mathrm{NHCHCH}=\mathrm{CH}_{2}\right), 118.2\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.8$, 128.0, 128.2, 128.4, 128.8 (aromatic $C H), 140.0\left(C H=\mathrm{CH}_{2}\right)$, 140.6 (ipso-C), 144.5 (ipso-C); m/z (APCI) 253 (20%), 252 $\left(\mathrm{MH}^{+}, 100 \%\right), 145$ (91\%); HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}^{+}$: 252.1752. Found 252.1756.
syn-(3RS,4RS)-3-[N-(tert-Butoxycarbonyl)amino]-4-phenyl-pent-1-ene 15 and anti-($3 S R, 4 R S$)-3- N-(tert-butoxycarbonyl)-4-phenylpent-1-ene 16. Thionyl chloride ($2.41 \mathrm{~g}, 0.90 \mathrm{~mL}$, 11.6 mmol) was added dropwise to a stirred solution of β methylphenylalanine hydrochloride ($1 \mathrm{~g}, 4.64 \mathrm{mmol}, 2: 1$ syn($2 S R, 3 R S$)-13: anti-($2 R S, 3 R S$)-14) in $\mathrm{MeOH}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and allowed to warm to rt over 18 h . Concentration in vacuo
afforded β-methylphenylalanine methyl ester hydrochloride as a white solid which was used without further purification. Di-tert-butyl dicarbonate ($1.06 \mathrm{~g}, 4.88 \mathrm{mmol}$), followed by $\mathrm{NaHCO}_{3}(1.49 \mathrm{~g}, 17.8 \mathrm{mmol})$ was added to a solution of the crude ester in $\mathrm{MeOH}(20 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ and allowed to warm to rt over 48 h . The reaction mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate concentrated in vacuo. The resulting solid was redissolved in $\mathrm{Et}_{2} \mathrm{O}$, filtered and concentrated in vacuo to give the crude product as a white solid. Purification via column chromatography $\left\{25 \% \mathrm{Et}_{2} \mathrm{O}\right.$: petrol ($40: 60$) $\}$ afforded a $2: 1 \operatorname{syn}-(2 S R, 3 R S)$ - to anti- $(2 R S, 3 R S)$-mixture of N-(tert-butoxycarbonyl)-3-methylphenylalanine methyl esters as a colourless viscous oil ($0.411 \mathrm{~g}, 32 \%$ over 2 steps). $v_{\text {max }}$ (thin film)/ $\mathrm{cm}^{-1} 3365(\mathrm{~N}-\mathrm{H}, \mathrm{br}), 2977(\mathrm{C}-\mathrm{H}), 1714$ (C=O, s br), 1454 (C=C aromatic, m); δ_{H} major diastereomer ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.37 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.35(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCH})$, $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.47-4.54(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}), 4.80(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 8.8, \mathrm{~N} H), 7.15-7.34(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H)$; δ_{H} minor diastereomer ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.37\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.41(9, \mathrm{~s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.19(1 \mathrm{H}, \mathrm{m}, \mathrm{MeC} H), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.47-4.54$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}), 5.05(1 \mathrm{H}$, br, $\mathrm{N} H), 7.15-7.34(5 \mathrm{H}, \mathrm{m}$, aromatic CH); δ_{C} major diastereomer ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 17.6 $\left(\mathrm{CHCH}_{3}\right), 28.2\left(\mathrm{CCH}_{3}\right), 42.1(\mathrm{MeCH}), 52.0\left(\mathrm{CH}_{3} \mathrm{O}\right), 58.7$ $(\mathrm{NHCH}), 79.9\left(\mathrm{CMe}_{3}\right), 127.2,127.6,128.5$ (aromatic CH), 140.9 (ipso-C), $155.7\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $172.3\left(\mathrm{NHCOO}^{\mathrm{t}} \mathrm{Bu}\right)$; δ_{C} minor diastereomer ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $16.5\left(\mathrm{CHCH}_{3}\right), 28.2\left(\mathrm{CCH}_{3}\right)$, $42.9(\mathrm{MeCH}), 51.9\left(\mathrm{CH}_{3} \mathrm{O}\right), 59.0(\mathrm{NHCH}), 79.9\left(\mathrm{CMe}_{3}\right)$, 127.0, 127.6, 128.4 (aromatic CH), 141.3 (ipso-C), 155.1 $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 172.3\left(\mathrm{NHCOO}^{t} \mathrm{Bu}\right) ; m / z\left(\mathrm{APCI}^{+}\right) 249$ (13\%) 195 $(13 \%), 194\left(\mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}\left(\mathrm{NH}_{4}{ }^{+}\right) \mathrm{CO}_{2} \mathrm{Me}, 100 \%\right), 134(94 \%)$, 121 (18\%).
DIBAL-H (1.5 M in toluene, $1.05 \mathrm{~mL}, 1.57 \mathrm{mmol}$) was added dropwise to a stirred solution of $2: 1 \operatorname{syn}-(2 S R, 3 R S)$ to anti-(2RS,3RS)-N-(tert-butoxycarbonyl)-3-methylphenylalanine methyl esters ($420 \mathrm{mg}, 1.43 \mathrm{mmol}$) in toluene (20 mL) under Ar at $-78^{\circ} \mathrm{C}$ and stirred for 12 h at $-78^{\circ} \mathrm{C}$ before the dropwise addition of $\mathrm{MeOH}(5 \mathrm{~mL})$. After warming to rt aq $\mathrm{NaK}\left[\mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2}\right]_{2}(20 \mathrm{~mL}, 1 \mathrm{M})$ was added and the solution was stirred for a further 1.5 h before being extracted into $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 30 \mathrm{~mL})$ and the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give crude aldehyde which was used without further purification. A stirred suspension of $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}(1.07 \mathrm{~g}, 3.00 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ under N_{2} was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{BuLi}(1.69 \mathrm{M}$ in hexanes, $1.69 \mathrm{~mL}, 2.86$ mmol) was added dropwise. The solution was stirred at rt for 30 min , cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of crude aldehyde in THF (10 mL) was added via cannula. The reaction mixture was warmed to rt and stirred for a further 4 h before the addition of water $(20 \mathrm{~mL})$. The organic material was extracted into $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 30 \mathrm{~mL})$, washed with sat brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and then concentrated in vacuo to give the crude product as a yellow oil. Purification via column chromatography $\{15 \%$ $\mathrm{Et}_{2} \mathrm{O}$-petrol $\left.(40: 60)\right\}$ gave a $2: 1$ mixture of $\mathbf{1 5}$ and $\mathbf{1 6}$ as viscous, pale yellow oil ($84 \mathrm{mg}, 23 \%$). $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3349(\mathrm{~N}-\mathrm{H}$, br), 2976 (C-H, m), 1703 (C=O, s), 1496 (C=C aromatic, m); δ_{H} major diastereomer $15\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.29-1.33(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}), 4.32-$ $4.47(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}$ and NHCH$), 5.07-5.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.70-5.79 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.18-7.33(5 \mathrm{H}, \mathrm{m}$, aromatic CH$)$; δ_{H} minor diastereomer $16\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.29-1.33(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H_{3} \mathrm{CH}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}), 4.32-4.47$ $(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}$ and NHCH$), 5.07-5.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.59-5.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.18-7.33(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}$ major diastereomer $15\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.2\left(\mathrm{CH}_{3} \mathrm{CH}\right), 28.3$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 43.8(\mathrm{MeCH}), 57.8(\mathrm{CHN}), 79.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 115.4}\right.$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.6,128.0,128.2(5 \times \mathrm{ArCH}), 137.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, 142.4 (ipso- CH), $155.3\left(\mathrm{NHCOO}^{+} \mathrm{Bu}\right)$; δ_{C} minor diastereomer $16\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.2\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $28.3\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 44.2$ $(\mathrm{MeCH}), 57.9(\mathrm{CHN}), 79.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 115.5\left(\mathrm{CH}=\mathrm{CH}_{2}\right)\right.$, 126.6, 128.0, $128.3(5 \times \mathrm{ArCH}), 137.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 142.6$ (ipso-
$C \mathrm{H}), 155.3$ ($\mathrm{NHCOO}{ }^{\mathrm{t}} \mathrm{Bu}$); $m / z\left(\mathrm{APCI}^{+}\right) 162\left(44 \%, \mathrm{MH}_{2}{ }^{+}-\right.$ $\mathrm{COO}^{\mathrm{t}} \mathrm{Bu}$), 146 (20), 145 ($100, \mathrm{PhCH}(\mathrm{Me}) \mathrm{CHCH}=\mathrm{CH}_{2}{ }^{+}$); HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}^{+}: 262.1807$. Found 262.1819.
syn-(2RS,3RS)-2-Phenyl-3-aminopentane 17 and anti-(2RS,3SR)-2-phenyl-3-aminopentane 18. $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon $(20 \%, 10 \mathrm{mg}$, cat) was added to a stirred solution of $\mathbf{1 5}$ and $\mathbf{1 6}$ $(62 \mathrm{mg}, 0.238 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ and stirred under H_{2} (1 atm) for 18 h at rt . The crude reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated in vacuo. Purification via column chromatography $\left\{15 \% \mathrm{Et}_{2} \mathrm{O}\right.$: petrol ($40: 60$) $\}$ afforded a $2: 1$ mixture of syn-($2 R S, 3 R S$)-3-N-(tert-butoxycarbonyl)-1-ethyl-2-phenylpentane and anti-($2 R S, 3 S R$)-3-N-(tert-butoxy-carbonyl)-1-ethyl-2-phenylpentane as a colourless oil (55 mg , 88%). $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3351(\mathrm{~N}-\mathrm{H}, \mathrm{br}), 2968(\mathrm{C}-\mathrm{H}, \mathrm{s}), 1703$ ($\mathrm{C}=\mathrm{O}, \mathrm{s}$), 1454 ($\mathrm{C}=\mathrm{C}$ aromatic); δ_{H} major diastereomer (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.91\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98-1.11(1 \mathrm{H}$, $\mathrm{m}, \mathrm{MeCH} 2), 1.30-1.57\left(13 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CHPh}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{MeCH}_{2}\right), 2.91-2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCHPh}), 3.63-3.72(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{NH}), 4.16(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.3, \mathrm{~N} H), 7.18-7.33(5 \mathrm{H}, \mathrm{m}$, aromatic CH); δ_{H} minor diastereomer ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.85(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30-1.57\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CHPh}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and MeCH_{2}), 2.91-2.95 (1H, m, MeCHPh), 3.63-3.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ $\mathrm{NH}), 4.98(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9.7, \mathrm{~N} H), 7.18-7.33(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H)$; δ_{C} major diastereomer $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $17.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 44.9(\mathrm{MeCH})$, $56.7(\mathrm{CHNH})$, $78.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 126.3,128.2,128.3 \text { (aromatic }}\right.$ CH), 142.9 (ipso-C), 156.0 ($\mathrm{NHC=O}$); δ_{C} minor diastereomer $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 25.3$ $\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 43.3(\mathrm{MeCH}), 57.2(\mathrm{CHNH}), 78.9$ $\left(\mathrm{C}_{\left.\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 126.4,127.8,128.2 \text { (aromatic } \mathrm{CH}\right), 144.2 \text { (ipso-C), }}^{\text {(} \mathrm{C}}\right.$, $156.0(\mathrm{NHC=O}) ; ~ m / z\left(\mathrm{APCI}^{+}\right) 236(18 \%), 208\left(\mathrm{MH}_{2}^{+}-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 32 \%\right), 164\left(\mathrm{MH}_{2}{ }^{+}-\mathrm{COO}^{+} \mathrm{Bu}, 60 \%\right), 147(\mathrm{PhCH}-$ (Me) $\mathrm{CH}^{+} \mathrm{CH}_{2} \mathrm{CH}_{3}, 98 \%$), 105 (100%); HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{2}^{+}: 264.1964$. Found MH^{+}264.1969.
TFA (1 mL) was added to a stirred solution of a $2: 1$ mixture of syn-($2 R S, 3 R S$)- N-(tert-butoxycarbonyl)-1-ethyl-2-phenylpentane and anti-($2 R S, 3 S R$)- N-(tert-butoxycarbonyl)-1-ethyl-2-phenylpentane ($37 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) under Ar and the solution stirred for 1 h at rt before concentration in vacuo. The residue was dissolved in aq $\mathrm{NaOH}(10 \mathrm{~mL}, 1 \mathrm{M})$ and the organic material extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford 17 and 18 as a pale yellow oil ($20 \mathrm{mg}, 85 \%$). $v_{\text {max }}$ (thin film)/ $/ \mathrm{cm}^{-1} 3371$ ($\mathrm{N}-\mathrm{H}, \mathrm{br}$), 2961 ($\mathrm{C}-\mathrm{H}, \mathrm{s}$), 1453 ($\mathrm{C}=\mathrm{C}$ aromatic, m); δ_{H} major diastereomer ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.98\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.13-1.73 ($7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}, \mathrm{N} \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $2.60-2.68(1 \mathrm{H}$, $\mathrm{m}, \mathrm{MeC} H), 2.72-2.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NH}_{2}\right), 7.19-7.34(5 \mathrm{H}, \mathrm{m}$, aromatic CH); δ_{H} minor diastereomer ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 0.93 $\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13-1.73\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}, \mathrm{NH}_{2}\right.$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}$), 2.72-2.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}$ and MeCH), 7.19-7.34 $(5 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}$ major diastereomer (100 MHz , $\left.\mathrm{CDCl}_{3}\right) 10.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{3} \mathrm{CH}\right), 27.4\left(\mathrm{CH}_{2}\right), 46.0(\mathrm{Ph}-$ CHMe), $57.9\left(\mathrm{CHNH}_{2}\right), 127.1,128.1,128.4$ (aromatic CH), 144.9 (ipso-C); δ_{C} minor diastereomer ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 10.9 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 15.6\left(\mathrm{CH}_{3} \mathrm{CH}\right), 27.9\left(\mathrm{CH}_{2}\right), 45.1(\mathrm{PhCHMe}), 58.4$ $\left(\mathrm{CHNH}_{2}\right), 126.3,128.0,128.3$ (aromatic $C \mathrm{H}$), 145.4 (ipso-C); $m / z\left(\mathrm{APCI}^{+}\right) 219(14 \%), 164\left(\mathrm{MH}^{+}, 30 \%\right), 147\left(\mathrm{M}-\mathrm{NH}_{2}\right.$, 55%), 105 (100%).
anti-(2RS,3SR)-2-Phenyl-3-aminopentane 18. $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon $(20 \%, 10 \mathrm{mg}$, cat) was added to a solution of $\mathbf{1 2}$ (41 mg , $0.163 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$, and the solution stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 18 h . The crude reaction mixture was filtered through Celite and concentrated in vacuo to give $\mathbf{1 8}(11 \mathrm{mg}$, 42%) as a colourless oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3340(\mathrm{br}, \mathrm{N}-\mathrm{H}), 2963$ (s, C-H), 1455 (m, C=C aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $0.93\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.15-1.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30$ ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH}_{3} \mathrm{CHPh}$), $1.41-1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.98$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} \mathrm{H}_{2}$) , 2.72-2.79 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{C} H\right), 2.80-2.83(1 \mathrm{H}, \mathrm{m}$,
$\mathrm{C} H \mathrm{NH}_{2}$), 7.19-7.33 (5H, m, aromatic CH$) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 10.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{3} \mathrm{CHPh}\right), 27.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $45.0\left(\mathrm{PhCHCH}_{3}\right), 58.4\left(\mathrm{CHNH}_{2}\right), 126.1,127.9,128.3$ (aromatic CH), 145.2 (ipso-C); m/z (APCI) 219 (14\%), $164\left(\mathrm{MH}^{+}, 21 \%\right)$, $147\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}, 67 \%\right), 105(100 \%)$; HRMS Calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}^{+}: 164.1439$. Found 164.1437.
(E)-Ethyl 4-phenyl-4-methoxybut-2-enoate 20. DIBAL-H (1.5 M solution in toluene, $12.2 \mathrm{~mL}, 18.4 \mathrm{mmol}$) was added dropwise to a stirred solution of methyl O-methylmandelate 19 ($3.0 \mathrm{~g}, 16.7 \mathrm{mmol}$) in toluene $(80 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ over 45 min whilst maintaining the temperature below $-70^{\circ} \mathrm{C}$. After 2 hours, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}(6.39 \mathrm{~g}, 18.4 \mathrm{mmol})$ was added and the mixture warmed to rt over 18 h before the addition of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~g})$ and the resulting slurry stirred for a further 1 h . The mixture was filtered through Celite ${ }^{\circledR}$, diluted with toluene (100 mL) and washed successively with aq HCl $(2 \times 100 \mathrm{~mL})$, aq sat $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$ and sat brine $(2 \times$ 100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\left\{10 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol(40:60) \} gave $20(1.96 \mathrm{~g}, 53 \%)$ as a colourless oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2983 (m, C-H), 1720 (s, C=O), 1658 (m, C=C aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.34(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.18\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.78(1 \mathrm{H}, \mathrm{d}, J 5.5$, $\left.\mathrm{CH}_{3} \mathrm{OCHCH}=\mathrm{CH}\right), 6.08(1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{CH}=\mathrm{CHCOOEt}), 6.96$ ($1 \mathrm{H}, \mathrm{dd}, J 15.7,5.5, \mathrm{CHCH}=\mathrm{CH}$), $7.30-7.40(5 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 56.8\left(\mathrm{OCH}_{3}\right), 60.5$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 82.6\left(\mathrm{PhCHOCH}_{3}\right), 121.1(\mathrm{CH}=\mathrm{CHCOOEt})$, 127.3, 128.5, 128.9 (aromatic CH), 139.1 (ipso-C), 147.5 $(\mathrm{CHCH}=\mathrm{CH}), 166.6(\mathrm{COOEt}) ; m / z$ (APCI) $189\left(\mathrm{MH}^{+}-\right.$ $\mathrm{MeOH}, 65 \%), 161(94 \%), 133(82 \%), 117(28 \%), 115(100 \%)$; Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C 70.9, H 7.3. Found: C 70.9, H 7.5\%.
(\boldsymbol{E})-1-Phenyl-1-methoxybut-2-en-4-ol 21. DIBAL-H (1.5 M in toluene, $15.2 \mathrm{~mL}, 22.7 \mathrm{mmol}$) was added dropwise to a stirred solution of $\mathbf{2 0}(2.0 \mathrm{~g}, 9.09 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirred for 1 h followed by the dropwise addition of $\mathrm{MeOH}(10 \mathrm{~mL})$. The solution was allowed to warm to rt and aq $\mathrm{NaK}\left[\mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2}\right]_{2}(75 \mathrm{~mL}, 1 \mathrm{M})$ was added. After 18 h , the organic material was extracted into toluene $(3 \times 50 \mathrm{~mL})$, washed with sat brine $(2 \times 75 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\{50 \%$ EtOAc-petrol ($40: 60$) \} gave $21(1.30 \mathrm{~g}, 80 \%)$ as a colourless oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3380 (br s, O-H), 2933 (m, C-H), 1602 (w, C=C), 1453 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 1.38 $(1 \mathrm{H}, \mathrm{t}, J 6.1, \mathrm{OH}), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $4.66(1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{OCHCH}=\mathrm{CH}), 5.81-5.93(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C} H)$, 7.27-7.39 ($5 \mathrm{H}, \mathrm{m}$, aromatic CH); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.3$ $\left(\mathrm{OCH}_{3}\right), 56.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 83.9\left(\mathrm{CH}_{3} \mathrm{OCH}\right), 127.0,128.0,128.7$ (aromatic $C \mathrm{H}), 131.8(\mathrm{CH}=\mathrm{CH}), 141.0$ (ipso-C); m/z (APCI) $161\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 12 \%\right), 155(17 \%), 147\left(\mathrm{MH}^{+}-\mathrm{MeOH}\right.$, 57%), 129 (100%), 122 (58%), 121 (29%).

Benzaldehyde (\boldsymbol{E})-O-(4-phenyl-4-methoxybut-2-enyl)oxime 23. $\mathrm{PPh}_{3}(3.23 \mathrm{~g}, 11.7 \mathrm{mmol})$ was added to a stirred solution of $21(1.9 \mathrm{~g}, 10.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, followed by the addition of N -bromosuccinimide ($2.09 \mathrm{~g}, 11.2 \mathrm{mmol}$) over 5 min and stirred at rt for 3 h before the addition of water $(15 \mathrm{~mL})$. The organic material was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 30 mL), washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford the crude bromide 22 as a pink solid, which was used immediately in the next step. $\mathrm{KO}^{\prime} \mathrm{Bu}$ $(2.18 \mathrm{~g}, 21.3 \mathrm{mmol})$ was added to a stirred solution of benzaldehyde oxime ($2.39 \mathrm{~g}, 21.3 \mathrm{mmol}$) in THF (200 mL), and the mixture stirred for 30 min before the addition of a solution of bromide 22 (10.7 mmol) in THF (20 mL) via cannula. After 18 h , the reaction was quenched with aq phosphate pH 7 buffer $(100 \mathrm{~mL})$, extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, washed with sat brine ($2 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\left\{5 \% \mathrm{Et}_{2} \mathrm{O}\right.$ -
petrol ($40: 60$) \} gave $\mathbf{2 3}(1.36 \mathrm{~g}, 45 \%$ over two steps) as a yellow oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2928 (m, C-H), 1602 (w, C=C), 1492 (m, $\mathrm{C}=\mathrm{C}$ aromatic), 1448 ($\mathrm{m}, \mathrm{C}=\mathrm{C}$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.70-4.72\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, 5.89-6.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{C} H), 7.29-7.60(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H)$, $8.12(1 \mathrm{H}, \mathrm{s}, \mathrm{PhC} H=\mathrm{N}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 56.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 74.2$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 83.7\left(\mathrm{CH}_{3} \mathrm{OCH}\right), 127.1,127.3,128.0,128.2,128.8$, 128.9 (aromatic $C \mathrm{H}), 130.1(\mathrm{CH}=\mathrm{CH}), 132.4$ (ipso-C), 134.7 $(\mathrm{CH}=\mathrm{CH}), 141.1$ (ipso-C), $149.1(\mathrm{CH}=\mathrm{N}) ; \mathrm{m} / \mathrm{z}(\mathrm{APCI}) 250$ $\left(\mathrm{MH}^{+}-\mathrm{MeOH}, 21 \%\right), 129(22 \%), 122(28 \%), 105(17 \%), 104$ (100\%); Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 76.8, H 6.8, N, 5.0. Found C 77.1, H 6.7, N 5.0\%.
(E)-N-Benzyl-O-(4-phenyl-4-methoxybut-2-enyl)hydroxyl-
amine 24. A solution of pyridine-borane complex (8 M in excess pyridine, $3.13 \mathrm{~mL}, 21.4 \mathrm{mmol}$) in $\mathrm{EtOH}(5 \mathrm{~mL}$) was added to a stirred solution of $23(0.80 \mathrm{~g}, 2.85 \mathrm{mmol})$ in EtOH $(15 \mathrm{~mL})$ at rt and the solution cooled to $0^{\circ} \mathrm{C}$ before the addition of $10 \% \mathrm{HCl}$ in $\mathrm{EtOH}(30 \mathrm{~mL})$. The stirred reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 18 h , and cooled to rt before the solution was made alkaline to pH 10 by the addition of aq NaOH $(50 \mathrm{~mL}, 1 \mathrm{M})$. The organic material was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 60 \mathrm{~mL})$ and the combined organic extracts washed with aq $\mathrm{CuSO}_{4}(3 \times 100 \mathrm{~mL}, 1 \mathrm{M})$ and water $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\left\{8 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol ($40: 60$) \} afforded 24 (0.462 g, 57%) as a colourless oil. $v_{\max } / \mathrm{cm}^{-1}$ (film) $3250(\mathrm{~m}, \mathrm{~N}-\mathrm{H}), 2926$ ($\mathrm{m}, \mathrm{C}-\mathrm{H}$), 1602 ($\mathrm{w}, \mathrm{C}=\mathrm{C}$), 1495 (m, C=C aromatic), 1453 (m, $\mathrm{C}=\mathrm{C}$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{2}\right), 4.17\left(2 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{CH}=\mathrm{CHCH}_{2}\right), 4.63(1 \mathrm{H}, \mathrm{d}$, $\left.J 4.4, \mathrm{CH}_{3} \mathrm{OCHCH}=\mathrm{CH}\right), 5.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 5.79-5.81(2 \mathrm{H}$, $\mathrm{m}, \mathrm{C} H=\mathrm{C} H), 7.28-7.38(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 56.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 56.6\left(\mathrm{OCH}_{3}\right), 74.1\left(\mathrm{NHCH}_{2}\right), 83.8$ $\left(\mathrm{CH}_{3} \mathrm{OCH}\right.$), 127.0, 127.7, 127.9, 128.6, 128.7 (aromatic CH), 129.2 ($\mathrm{CH}=\mathrm{CH}$), 134.3 ($\mathrm{CH}=\mathrm{CH}$), 137.7, 141.1 ($\mathrm{ipso-C}$); m/z (Probe CI $\left.\left\{\mathrm{NH}_{3}\right\}\right) 284\left(\mathrm{MH}^{+}, 19 \%\right), 253(20 \%)$, $252\left(\mathrm{MH}^{+}-\right.$ $\mathrm{MeOH}, 100 \%$); HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}: 284.1650$. Found: 284.1655
syn-(1RS,2RS)-1-Phenyl-1-methoxy-3-(N-benzyl- N-hydroxy-amino)but-3-ene 25. a. Preparation from rearrangement of (E)-24; n-BuLi (1.75 M solution in hexanes, $0.61 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$ was added dropwise to a stirred solution of $\mathbf{2 4}(300 \mathrm{mg}$, $1.06 \mathrm{mmol})$ in THF $(21 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirred for 1 h before warming to rt over 1 h . Water (10 mL) was added and the organic material was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to yield the crude product $25(281 \mathrm{mg}, 94 \%)$ as a colourless oil with identical spectroscopic properties to that prepared from rearrangement of (Z)-34.
b. Preparation from rearrangement of $(Z)-34 ; n-\operatorname{BuLi}(2.5 \mathrm{M}$ solution in hexanes, $0.17 \mathrm{~mL}, 0.38 \mathrm{mmol}$) was added dropwise to a stirred solution of $\mathbf{3 4}(103 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h before warming to rt over 1 h . Water (25 mL) was added and the organic material was extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\left\{5 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol ($40: 60$) \} gave $\mathbf{2 5}(53 \mathrm{mg}, 51 \%$) as a colourless oil. $v_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{KBr}$ disc) $3338(\mathrm{~s}, \mathrm{O}-\mathrm{H}), 2923(\mathrm{~m}, \mathrm{C}-\mathrm{H}), 1494$ (m), $1455(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.50$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} \mathrm{NOH}), 3.75(1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{NC} H \mathrm{HPh}), 4.03$ ($1 \mathrm{H}, \mathrm{d}, J 13.4, \mathrm{NCH} H \mathrm{Ph}), 4.51\left(1 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{CH}_{3} \mathrm{OCHCH}\right)$, $4.95(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{CH}=\mathrm{CHH}), 5.18(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{CH}=\mathrm{CH} H)$, $5.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.77-5.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 7.22-7.39$ $(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.8\left(\mathrm{OCH}_{3}\right)$, $61.3\left(\mathrm{PhCH}_{2}\right), 69.7,84.8(2 \times \mathrm{CH}), 120.7\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 127.1$, 127.8, 127.9, 128.1, 128.2, 129.3 (aromatic $C \mathrm{H}), 132.1(\mathrm{CH}=$ CH_{2}), 137.8, 139.1 (ipso-C); m/z (APCI) $284\left(\mathrm{MH}^{+}, 40 \%\right.$), 252 $\left(\mathrm{MH}^{+}-\mathrm{MeOH}, 100 \%\right), 129(60 \%), 106(30 \%)$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 76.3, H 7.5, N 4.9. Found: C 76.2, H 7.4, N 4.9%.
syn-(1RS,2RS)-1-Phenyl-1-methoxy-3-(N-benzylamino)but-3-ene 26. Zinc powder ($650 \mathrm{mg}, 9.93 \mathrm{mmol}$) was added to a stirred solution of crude $\mathbf{2 5}(281 \mathrm{mg}, 0.993 \mathrm{mmol})$ in aq HCl ($1 \mathrm{M}, 25 \mathrm{~mL}$) and heated to $80^{\circ} \mathrm{C}$ for 2 h . After cooling, aq $\mathrm{NaOH}(1 \mathrm{M}, 30 \mathrm{~mL})$ was added until pH 10 , and the organic material extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Purification by column chromatography $\left\{50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol ($40: 60$) \} gave $26(168 \mathrm{mg}$, 63%) as a pale yellow oil which solidified on standing to a waxy cream solid. (Mp 41-43 ${ }^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3330 (w, N-H), 2822 (m, C-H), 1603 (w, C=C), 1494 (m, C=C aromatic), 1453 $\left(\mathrm{m}, \mathrm{C}=\mathrm{C}\right.$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.31\left(1 \mathrm{H}, \mathrm{t}, J 8.2, \mathrm{C} H \mathrm{CH}=\mathrm{CH}_{2}\right), 3.62(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{NHC} H \mathrm{H})$, $3.87(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{NHCH} H), 4.07\left(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{CH}_{3} \mathrm{OC} H\right)$, $4.93(1 \mathrm{H}, \mathrm{d}, J 17.2, \mathrm{CH}=\mathrm{CHH}), 5.03(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{CH}=\mathrm{CH} H)$, 5.48-5.56 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.23-7.35(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 51.2\left(\mathrm{NHCH}_{2} \mathrm{Ph}\right), 56.8\left(\mathrm{OCH}_{3}\right)$, $66.9\left(\mathrm{NHCHCH}=\mathrm{CH}_{2}\right), 86.6\left(\mathrm{PhCHOCH}_{3}\right), 118.6\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$, 126.7, 127.8, 127.9, 128.0, 128.1, 128.3 (aromatic $C \mathrm{H}$), 136.7 ($\mathrm{CH}=\mathrm{CH}_{2}$), 138.9 (ipso-C), 140.5 (ipso-C); m/z (APCI) 323 (13%), 269 (12%), $268\left(\mathrm{MH}^{+}, 100 \%\right), 237(13 \%), 236\left(\mathrm{MH}^{+}-\right.$ $\mathrm{MeOH}, 82 \%$); HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}^{+}: 268.1701$. Found 268.1706.
syn-(1RS,2RS)-1-Phenyl-1-methoxy-3-(N-benzylamino)but-3-ene hydrochloride $\mathbf{2 6} \cdot \mathbf{H C l} . \mathrm{HCl}(\mathrm{g})$ was bubbled through a solution of $\mathbf{2 6}(106 \mathrm{mg}, 0.397 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ for 2 min and the solvent removed in vacuo to afford the crude product $\mathbf{2 6} \cdot \mathrm{HCl}(108 \mathrm{mg}, 85 \%)$ as a cream coloured solid. A small portion was purified for characterisation and X-ray crystallography by recrystallisation ($1: 3$ petrol : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, white needles). Mp $167-169{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ (KBr disc) 3361 (br, N-H), 2696 (br, $\mathrm{C}-\mathrm{H}), 1602(\mathrm{~m}, \mathrm{C}=\mathrm{C}), 1471(\mathrm{C}=\mathrm{C}$ aromatic), $1454(\mathrm{C}=\mathrm{C}$ aromatic); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.87(1 \mathrm{H}, \mathrm{t}$, J 9.7, $\mathrm{NH}_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$), $4.20\left(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{NH}_{2} \mathrm{CHHPh}\right)$, $4.35\left(1 \mathrm{H}, \mathrm{d}, J 13.3, \mathrm{NH}_{2} \mathrm{CH} H \mathrm{Ph}\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{CH}_{3}\right.$ $\mathrm{OC} H), 5.11(1 \mathrm{H}, \mathrm{d}, J 17.0, \mathrm{CH}=\mathrm{CHH}), 5.41(1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{CH}=$ $\mathrm{CH} H), 5.76-5.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 7.31-7.55(10 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 48.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.9$ $\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2}\right), 67.1\left(\mathrm{CHCH}=\mathrm{CH}_{2}\right), 83.5\left(\mathrm{PhCHOCH}_{3}\right), 127.4$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 129.1\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 129.3,129.8,130.3,130.6,131.0$ (aromatic CH), 132.4 (ipso-C), 137.4 (ipso-C); m/z (APCI) 323 (12\%), 269 (15%), $268\left(\mathrm{M}^{+}, 100 \%\right), 237(14 \%), 236$ (83%).
anti-(3RS,4SR)-3-(N-Benzylamino)-1-phenyl-1-methoxybut-3-ene 28. DIBAL-H ($5.98 \mathrm{ml}, 1.0 \mathrm{M}$ in hexanes, 5.98 mmol) was added dropwise to a stirred solution of methyl O-methylmandelate ($979 \mathrm{mg}, 5.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. After two hours, benzylamine $(0.59 \mathrm{ml}, 5.44 \mathrm{mmol})$ was added, and the mixture allowed to reach rt over a period of 16 h . $\mathrm{MeOH}(5 \mathrm{ml})$ was then added, followed after 5 minutes by aqueous sodium potassium tartrate ($20 \mathrm{ml}, 1.0 \mathrm{M}$). After stirring for four hours, water (50 ml) was added and the resultant mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to yield the crude imine 27 ($1.0 \mathrm{~g}, 78 \%$ crude yield), which was used without purification in the next step. $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.61$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.83(1 \mathrm{H}, \mathrm{d}, J 5.7, \mathrm{CH}=\mathrm{N}$), $7.21-7.42(10 \mathrm{H}$, m , aromatic $\mathrm{C} H), 7.74(1 \mathrm{H}, \mathrm{dt}, J 5.7,1.5)$.
$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.57 \mathrm{~mL}, 4.66 \mathrm{mmol})$ was added to a stirred solution of the imine ($371 \mathrm{mg}, 1.55 \mathrm{mmol}$) in THF (10 ml) at $-78{ }^{\circ} \mathrm{C}$ and stirried for 30 min before the addition of vinylmagnesium bromide (1.0 M in THF, 10 mL) over 5 minutes. After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was allowed to warm to rt . After a further two hours, water (100 ml) was added, and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Purification by column chromatography $\left\{20 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol ($40: 60$) $\}$ gave 28 $(112 \mathrm{mg}, 27 \%)$ as a pale yellow oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3328 (w) $(\mathrm{N}-\mathrm{H}), 2929(\mathrm{~m}), 1495(\mathrm{~m}), 1453(\mathrm{~s}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.23$
($1 \mathrm{H}, \mathrm{dd}, J 8.4,5.3, \mathrm{C} H \mathrm{NH}), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.59(1 \mathrm{H}, \mathrm{d}$, J 13.6, PhCHH$), 3.83(1 \mathrm{H}, \mathrm{d}, J 13.6$, $\mathrm{PhCH} H), 4.26(1 \mathrm{H}, \mathrm{d}$, $\left.J 5.3, \mathrm{CHOCH}_{3}\right), 5.04(1 \mathrm{H}, \mathrm{d}, J 17.1, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{dd}$, $J 10.2,1.7, \mathrm{CH}=\mathrm{CH} H), 5.72(1 \mathrm{H}$, ddd, $J 17.1,10.2,8.4, \mathrm{C} H=$ CH_{2}), $7.19-7.37(10 \mathrm{H}, \mathrm{m}$, aromatic CH$) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $50.7\left(\mathrm{PhCH}_{2}\right), 57.2\left(\mathrm{OCH}_{3}\right), 65.7(\mathrm{NHCH}), 86.5\left(\mathrm{CHOCH}_{3}\right)$, $118.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 126.8,127.7,127.8,128.1,128.2,128.3$ (aromatic CH), $136.8\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 139.1,140.4$ (ipso- C); m / z (APCI) $268\left(\mathrm{MH}^{+}, 40 \%\right), 236\left(\mathrm{MH}^{+}-\mathrm{MeOH}, 70 \%\right), 161$ $(10 \%), 150(15 \%), 129(100 \%), 106(15 \%)$; HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}^{+}: 268.1701$. Found: 268.1699 .

Benzaldehyde O-prop-2-ynyloxime 30. $\mathrm{KO}^{\prime} \mathrm{Bu}(1.0 \mathrm{~g}, 9.1$ mmol, 1.0 eq.) was added to a solution of benzaldehyde oxime $(1.0 \mathrm{~g}, 8.25 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) in \mathrm{THF}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 15 min propargyl bromide $29(1.4 \mathrm{~mL}, 12.4 \mathrm{mmol})$ was added dropwise and stirred overnight before the addition of $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(40 \mathrm{~mL})$. The resultant mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried, and concentrated in vacuo. Purification by column chromatography $\left\{20 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol (40:60) $\}$ gave $30(1.14 \mathrm{~g}, 87 \%)$ as a clear yellow oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 3293 (s, alkyne C-H), 2925 (m , $\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.54(1 \mathrm{H}, \mathrm{t}, J 2.4, \mathrm{C} \equiv \mathrm{C} H), 4.80$ ($2 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$), $7.38-7.46(3 \mathrm{H}, \mathrm{m}$, aromatic CH), $7.60-7.64(2 \mathrm{H}, \mathrm{m}$, aromatic CH$), 8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H=\mathrm{N}) ; \delta_{\mathrm{C}}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 61.7\left(\mathrm{CH}_{2}\right), 74.8,79.5(2 \times$ alkyne $C)$, 127.3, 128.7, 130.2 (aromatic $C H$), 131.7 (ipso-C), $150.0(C H=N)$; m / z (APCI) $160\left(\mathrm{MH}^{+}, 100 \%\right), 144(25 \%), 129(95 \%), 122$ (30%), $106(90 \%)$; HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}^{+}: 160.0762$. Found: 160.0760 .

Benzaldehyde O-(4-hydroxy-4-phenylbut-2-ynyl)oxime 31. LHMDS (1.0 M in THF, $6.29 \mathrm{~mL}, 6.29 \mathrm{mmol}$) was added to $30(909 \mathrm{mg}, 5.72 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 30 min , benzaldehyde $(0.87 \mathrm{~mL}, 8.58 \mathrm{mmol})$ was added and the mixture stirred for a further hour at $-78^{\circ} \mathrm{C}$ and warmed to rt for 1 hour before the addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the mixture extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), dried and concentrated in vacuo. Purification by column chromatography $\left\{30 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ petrol ($40: 60$) \} gave $31(1.17 \mathrm{~g}, 77 \%)$ as a colourless oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3400(\mathrm{br}, \mathrm{s}, \mathrm{O}-\mathrm{H}), 3062(\mathrm{~m}, \mathrm{C}-\mathrm{H}), 3029$ (m, C-H), 2919 (m, C-H), 1957 (w), 1888 (w), 1811 (w); $\delta_{\text {H }}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.88\left(2 \mathrm{H}, \mathrm{d}, J 1.1, \mathrm{CH}_{2}\right), 5.53$ $(1 \mathrm{H}, \mathrm{s} \mathrm{PhCHOH}), 7.31-7.42(6 \mathrm{H}, \mathrm{m}$, aromatic CH$), 7.57-7.64$ $(4 \mathrm{H}, \mathrm{m}$, aromatic CH$), 8.13(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H=\mathrm{N}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 62.1\left(\mathrm{CH}_{2}\right), 64.5(\mathrm{CHOH}), 82.5,86.6(C \equiv C), 126.8$, 127.3, 128.4, 128.6, 128.8, 130.2 (aromatic CH), 131.7, 140.3 (ipso-C), $150.1(C=\mathrm{N}) ; m / z(\mathrm{APCI}) 249\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 10 \%\right)$, $117(15 \%), 104(100 \%)$. Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{C} 77.0, \mathrm{H}$ 5.7, N 5.3. Found: C 76.9, H 5.7, N 5.3%.

Benzaldehyde \boldsymbol{O}-(4-methoxy-4-phenylbut-2-ynyl)oxime 32. A solution of $\mathbf{3 1}(1.17 \mathrm{~g}, 4.40 \mathrm{mmol})$ in THF (10 mL) was added by cannula to a stirred suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $194 \mathrm{mg}, 4.84 \mathrm{mmol}$, prewashed with pentane) in THF (10 mL) at $0^{\circ} \mathrm{C}$. After 30 min , methyl iodide ($0.8 \mathrm{~mL}, 13.2$ mmol) was added, and the mixture stirred for 18 h and allowed to reach rt. Methanol (10 mL), water (20 mL), and brine $(10 \mathrm{~mL})$ were then added, and the mixture extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography $\left\{50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol (40 : $60)$) gave $32(1.03 \mathrm{~g}, 84 \%)$ as a pale yellow oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2929 (m, C-H), 1957 (w), 1895 (w), 1745 (m), 1668 (m), 1607 $(\mathrm{m}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.92(2 \mathrm{H}, \mathrm{d}$, $\left.J 1.7, \mathrm{CH}_{2}\right), 5.20(1 \mathrm{H}, \mathrm{t}, J 1.7, \mathrm{PhCHOCH} 3), 7.35-7.68(10 \mathrm{H}$, m , aromatic CH$), 8.17(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}=\mathrm{N})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $55.9\left(\mathrm{OCH}_{3}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{C}\right), 73.1\left(\mathrm{CH}\left(\mathrm{OCH}_{3}\right) \mathrm{Ph}\right), 83.8$, 84.2 ($C \equiv C$), 127.5, 127.7, 128.7, 128.9, 130.3 (aromatic $C \mathrm{H}$), 132.1, 138.4 (ipso-C), $150.1(C \mathrm{H}=\mathrm{N}) ; m / z$ (APCI) $280\left(\mathrm{MH}^{+}\right.$, $20 \%), 117(15 \%), 104(100 \%)$; HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{14}{ }^{-}$ $\mathrm{NO}^{+}\left(\mathrm{MH}^{+}-\mathrm{MeOH}\right): ~ 248.1075$. Found: 248.1082.
(Z)-Benzaldehyde O-(4-methoxy-4-phenylbut-2-enyl)oxime 33. Lindlar's catalyst (200 mg) was added to 32 ($912 \mathrm{mg}, \mathrm{mmol}$) in methanol (10 mL), and stirred under $4 \mathrm{~atm} \mathrm{H}_{2}$ for 4 days. The mixture was then filtered through Celite, and concentrated in vacuo before purification by column chromatography $\{10 \%$ $\mathrm{Et}_{2} \mathrm{O}$-petrol ($40: 60$) \} to give 33 ($803 \mathrm{mg}, 66 \%$) as a colourless oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 2932 (s, C-H), 1955 (w), 1882 (w), 1812 (w), $1723(\mathrm{~m}), 1602(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.84 (1 H , ddd, $J 13.0,6.1,1.4, \mathrm{OCHH}$), 4.94 (1 H , ddd, $J 13.0$, $6.8,1.5, \mathrm{OCH} H), 5.09\left(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{CHOCH}_{3}\right), 5.78(1 \mathrm{H}$, app ddt, $\left.J 11.3,9.0,1.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C} H\right), 5.87-5.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ $\mathrm{CH}=\mathrm{CH}), 7.28-7.41(8 \mathrm{H}, \mathrm{m}$, aromatic CH$), 7.56-7.60(2 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H), 8.11(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.8$ $\left(\mathrm{OCH}_{3}\right), 70.4\left(\mathrm{CH}_{2}\right), 79.5\left(\mathrm{PhCHOCH}_{3}\right), 127.1,127.6,128.2$, 128.2, 129.0, 129.2, 130.4 (aromatic $C \mathrm{H}$ and $C=\mathrm{C}$), 132.6 (ipsoC), 134.5 ($\mathrm{C}=C$), 141.6 (ipso- C), 149.5 ($\mathrm{Ph} C=\mathrm{N}$); m / z (APCI) $250\left(\mathrm{MH}^{+}-\mathrm{MeOH}, 10 \%\right), 147\left(\mathrm{PhCHCH}=\mathrm{CHCH}_{2} \mathrm{OH}^{+}, 5 \%\right)$, 129 (15%), 122 ($\mathrm{PhCH}=\mathrm{NHOH}^{+}, 15 \%$), 104 (100%). Calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 76.8, H $6.8, \mathrm{~N} 5.0$. Found: C 76.5, H 6.5 , N 4.8\%.
(Z)-N-Benzyl-O-(4-methoxy-4-phenylbut-2-enyl)hydroxylamine 34. Borane-pyridine complex (0.76 mL) was added to 33 $(304 \mathrm{mg}, 1.08 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, followed by the dropwise addition of $10 \% \mathrm{EtOH}-\mathrm{HCl}(30 \mathrm{~mL})$ over 5 minutes before being allowed to warm to rt and stirred for a further 18 h . The reaction mixture was then basified with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$, dried $(\mathrm{Mg}$ SO_{4}), and concentrated in vacuo before purification by column chromatography $\left\{10 \% \mathrm{Et}_{2} \mathrm{O}\right.$-petrol ($40: 60$) \} to give 34 (221 $\mathrm{mg}, 72 \%$) as pale yellow oil. $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3260(\mathrm{~m}), 2928(\mathrm{~s})$, 1953 (w), 1861 (w), 1811 (w), $1602(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 4.29(1 \mathrm{H}, \mathrm{dd}, J 12.7$, 4.6, ОС $H \mathrm{H}$), $4.39(1 \mathrm{H}, \mathrm{dd}, J 12.7,6.0, \mathrm{OCH} H), 4.93(1 \mathrm{H}$, d, J 7.8, CHOCH_{3}), $5.67-5.77(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C} H), 7.25-7.38$ $(10 \mathrm{H}, \mathrm{m}$, aromatic $\mathrm{C} H)$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 56.2\left(\mathrm{OCH}_{3}\right)$, $56.6\left(\mathrm{PhCH}_{2}\right), 69.8\left(\mathrm{OCH}_{2}\right), 78.9(\mathrm{PhCH}), 126.6,127.5$, 127.6, 128.0, 128.5, 128.6, 129.0 (aromatic $C H$ and $C=\mathrm{C}$), 133.9 (C=C), 137.6, 141.3 (ipso-C); m/z (CI) 284 ($\mathrm{MH}^{+}, 15 \%$), 252 $\left(\mathrm{MH}^{+}-\mathrm{MeOH}, 100 \%\right), 222(10 \%), 161(15 \%), 147(25 \%), 130$ (20%), $105(25 \%), 92(20 \%)$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$: C 76.3, H 7.5, N 4.9. Found: C 76.4, H 7.2, N 4.9\%.

Acknowledgements

The authors wish to acknowledge the EPSRC for a studentship and the SCI for a Messel Scholarship (T. G. R. S) and New College, Oxford for a Junior Research Fellowship (A. D. S)

References and notes

1 I. Coldham in Comprehensive Functional Group Transformations, A. R. Katritzky, O. Meth-Cohn and C. W. Rees, Pergamon Press, Oxford, 1995, Vol. 1, p. 404.
2 (a) R. W. Hoffmann, Angew. Chem., 1979, 18, 563; (b) D. Enders and H. Kempen, Synlett, 1994, 969; (c) M. T. Reetz, N. Griebenow and R. Goddard, Chem. Commun., 1995, 1605; (d) J. C. Anderson and A. Flaherty, J. Chem. Soc., Perkin Trans. 1, 2001, 267; (e) J. Mulzer and D. Riether, Org. Lett., 2000, 2, 3139; (f) D. Enders, M. Bartsch and J. Runsink, Synthesis, 1999, 243.
3 (a) For examples of the synthetic utility of the [2,3]-Wittig rearrangement see: T. Nakai and K. Mikami, Chem. Rev., 1986, 86, 885; (b) T. Nakai and K. Mikami, Org. React., 1994, 46, 105; (c) J. A. Marshall in $\mathrm{C}-\mathrm{C} \sigma$ Bond Formation, ed. G. Pattenden vol. 3 of Comprehensive Organic Synthesis, eds. B. M. Trost and I. Fleming, Pergamon Press, 1990, 975.

4 (a) S. G. Davies, S. Jones, M. A. Sanz, F. C. Teixeira and J. F. Fox, Chem. Coттии., 1998, 2235; (b) S. G. Davies, J. F. Fox, S. Jones, A. J. Price, M. A. Sanz, T. G. R. Sellers, A. D. Smith and F. C. Teixeira, J. Chem. Soc., Perkin Trans. 1, 2002, 1757

5 (a) Z. Zhang and R. Scheffold, Helv. Chim. Acta, 1993, 76, 2602; (b) R. B. Cheikh, R. Chaabouni, A. Laurent, P. Mijon and A. Nafti, Synthesis, 1983, 685.

6 (a) K. Burgess and M. J. Ohlmeyer, J. Org. Chem., 1991, 56, 1027; (b) J. C. A. Hunt, P. Laurent and C. J. Moody, Chem. Commun., 2000, 18, 1771; (c) J. A. Marshall and A. W. Garafalo, J. Org. Chem., 1993, 58, 3675; (d) R. Jumnah, J. M. J. Williams and A. C. Williams, Tetrahedron Lett., 1993, 34, 6619.
7 (a) B. M. Trost and R. C. Bunt, J. Am. Chem. Soc., 1994, 116, 4089; (b) F. Effenberger, B. Gutterer and J. Syed, Tetrahedron: Asymmetry, 1995, 6, 2933; (c) P. Merino, S. Anoro, E. Castillo, F. Merchan and T. Tejero, Tetrahedron: Asymmetry, 1996, 7, 1887; (d) T. Hayashi and M. Ishigedani, Tetrahedron, 2001, 57, 2589; (e) R. B. Grossman, W. M. Davis and S. L. Buchwald, J. Am. Chem. Soc., 1991, 113, 2321.

8 S. D. Bull, S. G. Davies, S. Jones, J. V. A. Ouzman, A. J. Price and D. J. Watkin, Chem. Commun., 1999, 2079.

9 As shown by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude reaction mixture.
10 As supplied by the Aldrich Chemical Company Ltd.
11 The assignment of relative configuration to the commercially available $(2 S R, 3 R S)-\mathbf{1 3}$ and $(2 R S, 3 R S)-\mathbf{1 4}$ diastereoisomers was taken with consideration of the ${ }^{1} \mathrm{H}$ NMR data available from the literature; see Y. Kataoka, Y. Seto, M. Yamamoto, T. Yamada, S. Kuwata and H. Watanabe, Bull. Chem. Soc. Jpn., 1976, 49, 1081.

12 Using the protocol developed previously for aldehyde substrates which are sensitive to racemisation/epimerisation; see J. R. Luly, J. F. Dellaria, J. J. Plattner, J. L. Soderquist and N. Yi, J. Org. Chem., 1987, 52, 1487
13 (a) The diastereoselectivity observed upon addition of organometallic reagents to imines has found wide application in synthesis; for a review see D. Enders and U. Reinhold, Tetrahedron: Asymmetry, 1997, 8, 1895; (b) For related cases of additions of organometallic reagents to (a) a chiral α-aldoxime acetal see H. Fujioka, M. Masahiro, Y. Okaichi, T. Yoshida, H. Annoura, Y. Kita and Y. Tamura, Chem. Pharm. Bull., 1989, 37, 602; (c) an alkoxymethyl oxime ether see Y. Ukaji, K. Kume, T. Watai and T. Fujisawa, Chem. Lett., 1991, 173; (d) N-alkylketimines and 1,3oxazolidines see A. G. Steinig and D. M. Spero, J. Org. Chem., 1999, 64, 2406; (e) chiral 1,2-bisimines see S. Roland and P. Mangeney, Eur. J. Org. Chem., 2000, 1373.
14 J. Mulzer, M. Kappert, G. Huttner and I. Jibril, Angew. Chem., Int. Ed. Engl., 1984, 23, 704.
15 (a) H. Matsunaga, T. Sakamaki, H. Nagaoka and Y. Yamada, Tetrahedron Lett., 1983, 24, 3009; (b) N. Asao, T. Shimada, N. Tsukada and Y. Yamamoto, Tetrahedron Lett., 1994, 35, 8425; (c) U. A. Hausermann, A. Linden, J. Song and M. Hesse, Helv. Chim. Acta, 1996, 23, 704; (d) For a recent addition of a hydroxylamine see A. G. Moglioni, E. Muray, J. A. Castillo, Á. Álvarez-Larena, G. Y. Moltrasio, V. Branchadell and R. M. Otuño, J. Org. Chem., 2002, 67, 2402.
16 (a) Y. Chounan, Y. Ono, S. Nishii, H. Kitahara, S. Ito and Y. Yamamoto, Tetrahedron, 2000, 56, 2821; (b) Y. Yamamoto, S. Nishii and T. Ibuka, Chem. Commun., 1987, 1572; (c) Y. Yamamoto, Y. Chounan, S. Nishii, T. Ibuka and H. Kitahara, J. Am. Chem. Soc., 1992, 114, 7652; (d) A. Stoncius, C. A. Mast and N. Sewald, Tetrahedron: Asymmetry, 2000, 11, 3849.
17 (a) N. Asao, T. Shimada, T. Sudo, N. Tsukada, K. Yazawa, Y. S. Gyoung, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1997, 62, 6274; (b) N. Sewald, K. D. Hiller, M. Koerner and M. Findeisen, J. Org. Chem., 1998, 63, 7263.

18 K. N. Houk, M. N. Paddon-Row, N. G. Rondan, Y.-D. Wu, F. K. Brown, D. C. Spellmeyer, J. T. Metz, Y. Li and R. J. Loncharich, Science, 1986, 231, 1108.

19 (a) For other examples where the diastereoselectivity of the [2,3]Wittig rearrangement has been rationalised in a similar manner see R. Brückner, Chem. Ber., 1989, 122, 193; (b) R. Brückner and H. Priepke, Angew. Chem., Int. Ed. Engl., 1988, 27, 278; (c) E. Nakai and T. Nakai, Tetrahedron Lett., 1988, 29, 4587; (d) K. Mikami and T. Nakai, Synthesis, 1991, 594; (e) H. Priepke and R. Brückner, Chem. Ber., 1990, 123, 153
20 (a) The need for a metal counter-ion in the [2,3]-Wittig rearrangement has been the cause of much debate. Theoretical calculations have shown that the preferred transition structure of the Wittig rearrangement required the lithium cation; see: Y.-D. Wu, K. N. Houk and J. A. Marshall, J. Org. Chem., 1990, 1421; (b) However, in some cases E / Z and antilsyn ratios of products in the Wittig rearrangement have been shown to be independent of the metal counterion; see B. Kruse and R. Brückner, Tetrahedron Lett., 1990, 31, 4425.
21 For an example where the diastereoselectivity observed for a [2,3]Wittig rearrangement has been rationalised via a chelated transition state see S. W. Scheuplein, A. Kusche, R. Brückner and K. Harms, Chem. Ber., 1990, 123, 917.

